顯示具有 Data Science 標籤的文章。 顯示所有文章
顯示具有 Data Science 標籤的文章。 顯示所有文章

2014年10月28日 星期二

Types of Data Science Questions

In approximate order of difficulty

  • Descriptive (描寫的;記述的)
  • Exploratory (勘探的;探究的)
  • Inferential (推理的;推論的)
  • Predictive (預言性的;預兆的)
  • Causal (原因的;因果的)
  • Mechanistic (機械論的)

 

Types

 

Goal

Descriptive 描寫的;記述的 Describe a set of data
Exploratory 勘探的;探究的 Find relationships you didn’t know about
Inferential 推理的;推論的 Use a relatively small sample of data to say something about a bigger population
Predictive 預言性的;預兆的 To use the data on some objects to predict values for another object
Causal 原因的;因果的 To find out what happens to one variable when you make another variable change
Mechanistic 機械論的 Understand the exact changes in variables that lead to changes in other variables for individual objects

 

Descriptive (描寫的;記述的)

image

http://www.census.gov/2010census/

image

http://books.google.com/ngrams

image

 

Exploratory (勘探的;探究的)

image

http://www.sdss.org/

image

 

Inferential (推理的;推論的)

image

http://journals.lww.com/epidem/Abstract/2013/01000/Effect_of_Air_Pollution_Control_on_Life_Expectancy.4.aspx

image

 

Predictive (預言性的;預兆的)

image

http://fivethirtyeight.blogs.nytimes.com/

imageimage

 

Causal (原因的;因果的)

image

http://www.nejm.org/doi/full/10.1056/NEJMoa1205037?query=featured_home&

image

 

Mechanistic (機械論的)

image

http://www.fhwa.dot.gov/resourcecenter/teams/pavement/pave_3pdg.pdf

image

R Packages

image

image

image

image

 

image

image

 

image

 

image

image

 

image

2014年10月15日 星期三

Machine Learning – What is machine learning?

What is Learning?

image

 

What is Skill?

image

 

How to know it is a Tree?

image

 

The machine learning route:

image

 

Key essence of machine learning:

image

 

Fun Time:

image

2014年9月19日 星期五

R Introduction

Robert Gentleman + Ross

1. Free Software

2. Lots of Users, more than 2 million users

3. Lots of Applications, more than 5000 add-on (2013/10)

 

Data 競賽時選用的語言

image

 

Number of Google Scholar Hits For Each Software

image

 

Number of Posts

image

 

R Environment Installation:

1. R-Core

2. R IDE

2.1 RStudio Desktop / RStudio Server (http://www.rstudio.com/)

2.2 Architect (Eclipse-based IDE)

2.3 Revolution R (Optimization R-Core) for Academics

 

R all applications/packages

1. CRAN Task Views: 任務分組, 使用目的分組

http://cran.r-project.org/web/views/

SNAGHTML5fb404

安裝群組套件之前,必須先安裝並載入ctv套件

install.packages(‘ctv’)

library(ctv)

install.views(‘The one you want to install’)

2. R-forge: 鍛造廠, 較前瞻性的會放這

https://r-forge.r-project.org/

SNAGHTML64d4ae

 

R Knock Out Word!

1. Dynamic Documents

2. Reproducible Research

 

R 的文書功能:

1. Sweave (R + LaTex)

2. Knitr (R + Markdown)

3. IPython Notebook

image

 

R Input / Output Example:

1. Read local file (single/multiple)

2. Read network file

3. Read web page (SpideR)

4. Website dynamic interface (Shiny)

 

Code School, Try R:

https://www.codeschool.com/courses/try-r

image

image

image

image

image

image

image

image

image

image

 

R 推薦連結:

1. idre UCLA

2. Taiwan User R Group (Facebook)

3. Taiwan User R Group (Youtube)

4. 中華R軟體學會

5. 統計之都 COS

6. R Bloggers

7. R Language Resources (RevolutionAnalytics.com)

8. insider-R (美觀的R線上文件)